论文标题

$κμ$阴影褪色渠道下的平均误差概率的新精确近似

New Accurate Approximation for Average Error Probability Under $κ-μ$ Shadowed Fading Channel

论文作者

Mouchtak, Yassine, Bouanani, Faissal El

论文摘要

本文提出了使用$ M $ - 相移键(PSK)或差异的第四纪PSK(灰色编码(GC-DQPSK)调制方案)的通信系统的平均误差概率(AEP)的新精确近似值(AEP)。首先,两种调制方案的误差概率(EP)的新精确近似均在加性白色高斯噪声(AWGN)通道上得出。提出了利用梯形积分方法,提出了$ m $ -PPSK调制的符号误差概率的紧密近似表达,而Marcum $ Q $ Q $ Q $ Q $ QUANTICT的新上限和下限是一阶(MQF)的功能,以及随后在DQPSK方案下用于BIT错误概率(BER)的上限。接下来,将这些边界线性合并以提出高度精制且准确的BER近似值。与MQF密切相关的修改后的Bessel函数$ i_ {V} $的降低属性的关键想法表现出来,其参数$ v $。最后,这些近似值用于解决AEP的近似值$κ-μ$阴影褪色。数值结果表明,与确切的结果相比,提出的近似值的准确性。

This paper proposes new accurate approximations for average error probability (AEP) of a communication system employing either $M$-phase-shift keying (PSK) or differential quaternary PSK with Gray coding (GC-DQPSK) modulation schemes over $κ-μ$ shadowed fading channel. Firstly, new accurate approximations of error probability (EP) of both modulation schemes are derived over additive white Gaussian noise (AWGN) channel. Leveraging the trapezoidal integral method, a tight approximate expression of symbol error probability for $M$-PSK modulation is presented, while new upper and lower bounds for Marcum $Q$-function of the first order (MQF), and subsequently those for bit error probability (BER) under DQPSK scheme, are proposed. Next, these bounds are linearly combined to propose a highly refined and accurate BER's approximation. The key idea manifested in the decrease property of modified Bessel function $I_{v}$, strongly related to MQF, with its argument $v$. Finally, theses approximations are used to tackle AEP's approximation under $κ-μ$ shadowed fading. Numerical results show the accuracy of the presented approximations compared to the exact ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源