论文标题

旋转的二进制神经网络

Rotated Binary Neural Network

论文作者

Lin, Mingbao, Ji, Rongrong, Xu, Zihan, Zhang, Baochang, Wang, Yan, Wu, Yongjian, Huang, Feiyue, Lin, Chia-Wen

论文摘要

二元神经网络(BNN)在降低深神经网络的复杂性方面占优势。但是,它会遭受严重的性能退化。主要障碍之一是全精度重量矢量与其二进制向量之间的较大量化误差。以前的作品着重于补偿规范差距,而离开角度偏置几乎没有碰到。在本文中,我们首次探讨了角度偏置对量化误差的影响,然后引入旋转的二进制神经网络(RBNN),该网络(RBNN)考虑了完整精确的权重矢量与其二进制版本之间的角度对齐。在每个训练时期的开始时,我们建议将全精确的权重矢量旋转到其二元载体,以减少角度偏置。为了避免学习较大的旋转矩阵的高复杂性,我们进一步引入了双重旋转公式,该公式学习了两个较小的旋转矩阵。在训练阶段,我们设计了一个可调节的旋转重量矢量,以避免潜在的局部最优值。我们的旋转导致重量汇率约为50%,从而最大程度地增加了信息的增长。最后,我们提出了梯度向后的符号函数的训练意识近似。 CIFAR-10和Imagenet上的实验证明了RBNN的优势,而不是许多最新的。我们的源代码,实验设置,培训日志和二进制模型可在https://github.com/lmbxmu/rbnn上找到。

Binary Neural Network (BNN) shows its predominance in reducing the complexity of deep neural networks. However, it suffers severe performance degradation. One of the major impediments is the large quantization error between the full-precision weight vector and its binary vector. Previous works focus on compensating for the norm gap while leaving the angular bias hardly touched. In this paper, for the first time, we explore the influence of angular bias on the quantization error and then introduce a Rotated Binary Neural Network (RBNN), which considers the angle alignment between the full-precision weight vector and its binarized version. At the beginning of each training epoch, we propose to rotate the full-precision weight vector to its binary vector to reduce the angular bias. To avoid the high complexity of learning a large rotation matrix, we further introduce a bi-rotation formulation that learns two smaller rotation matrices. In the training stage, we devise an adjustable rotated weight vector for binarization to escape the potential local optimum. Our rotation leads to around 50% weight flips which maximize the information gain. Finally, we propose a training-aware approximation of the sign function for the gradient backward. Experiments on CIFAR-10 and ImageNet demonstrate the superiorities of RBNN over many state-of-the-arts. Our source code, experimental settings, training logs and binary models are available at https://github.com/lmbxmu/RBNN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源