论文标题

梯度缩小的Ricci孤子子的几何不平等和刚性

Geometric inequalities and rigidity of gradient shrinking Ricci solitons

论文作者

Wu, Jia-Yong

论文摘要

在本文中,我们证明了Sobolev不平等,对数Sobolev不平等,Schrödinger热核上限,Faber-Krahn不平等,NASH不平等和Rozenblum-Cwikel-Lieb不平等,所有这些都在完全的ninkegrient nightegrient nightegrient nightegn nighent ninkci selinkci soliton上存在。我们还获得了一些积分差距定理,用于紧凑的缩小ricci孤子。

In this paper we prove that the Sobolev inequality, the logarithmic Sobolev inequality, the Schrödinger heat kernel upper bound, the Faber-Krahn inequality, the Nash inequality and the Rozenblum-Cwikel-Lieb inequality all equivalently exist on complete gradient shrinking Ricci solitons. We also obtain some integral gap theorems for compact shrinking Ricci solitons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源