论文标题

使用直接融合驱动器的泰坦任务

A Titan mission using the Direct Fusion Drive

论文作者

Gajeri, Marco, Aime, Paolo, Kezerashvili, Roman Ya.

论文摘要

这项工作的主要目的是对土星最大的月球泰坦(Titan)进行机器人任务的现实新轨迹进行分析,以证明与直接融合驱动器(DFD)相关的巨大优势。 DFD是他燃料的D -$^3 $,动脉气核融合推进系统。这种融合推进概念基于磁性限制的场反向配置等离子体,在该等离子体中,氘推进剂被融合产物加热,然后扩展到磁性喷嘴中,为航天器提供推力和电能[1]。根据PPPL [1]提供的特征,获得了泰坦任务的轨迹计算和分析。考虑了两种不同的轮廓任务:第一个是推力沿岸的截止轮廓,并具有恒定的推力和特定的冲动;第二种情况是连续且持续的推力轮廓任务。每个任务研究都分为四个不同的阶段,从最初的低地球轨道出发开始,星际轨迹,土星轨道插入和泰坦轨道插入。对于所有任务阶段,计算机动时间和推进剂消耗。计算和任务分析的结果提供了有效载荷质量和旅行时间的优势的完整概述。重要的是要强调,减速功能是DFD游戏规则改变者之一:实际上,DFD性能允许迅速达到高速度并在更短时间内减速。考虑到连续的推力轮廓,该功能的总行程总持续时间为2。6年,而不到2年的行程。与当前技术相比,高有效载荷启用能力,再加上融合反应堆可提供的巨大电力。

The main purpose of this work is to perform an analysis of realistic new trajectories for a robotic mission to Saturn's largest moon, Titan, in order to demonstrate the great advantages related to the Direct Fusion Drive (DFD). The DFD is a D -$^3$He fuelled, aneutronic, thermonuclear fusion propulsion system. This fusion propulsion concept is based on a magnetically confined field reversed configuration plasma, where the deuterium propellant is heated by fusion products, and then expanded into a magnetic nozzle, providing both thrust and electrical energy to the spacecraft [1]. The trajectories calculations and analysis for the Titan mission are obtained based on the characteristics provided by the PPPL [1]. Two different profile missions are considered: the first one is a thrust-coast-thrust profile with constant thrust and specific impulse; the second scenario is a continuous and constant thrust profile mission. Each mission study is divided into four different phases, starting from the initial low Earth orbit departure, the interplanetary trajectory, Saturn orbit insertion and the Titan orbit insertion. For all mission phases, maneuver time and propellant consumption are calculated. The results of calculations and mission analysis offer a complete overview of the advantages in term of payload mass and travel time. It is important to emphasize that the deceleration capability is one of the DFD game changer: in fact, the DFD performance allows to rapidly reach high velocities and decelerate in even shorter time period. This capability results in a total trip duration of 2.6 years for the thrust-coast-thrust profile and less than 2 years considering the continuous thrust profile. The high payload enabling capability, combined with the huge electrical power available from the fusion reactor, leads to a tremendous advantage compared to present technology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源