论文标题

通过局部编码的归纳图嵌入

Inductive Graph Embeddings through Locality Encodings

论文作者

Alvarez-Gonzalez, Nurudin, Kaltenbrunner, Andreas, Gómez, Vicenç

论文摘要

从大规模网络中学习嵌入是一个开放的挑战。尽管有大量现有方法数量,但尚不清楚如何以一种容易概括到看不见的节点,边缘或图形的方式来利用网络结构。在这项工作中,我们研究了在没有域依赖性节点/边缘属性的大型网络中找到归纳网络嵌入的问题。我们建议使用一组基本预定义的局部编码作为学习算法的基础。特别是,我们考虑了与节点不同距离的程度频率,可以有效地计算出相对较短的距离和大量节点。有趣的是,当与语言模型学习以及在监督的任务中结合使用时,当用作神经网络中的其他功能时,所得的嵌入在网络中的看不见或遥远区域都很好地概括了。尽管它很简单,但此方法仍在角色检测,链接预测和节点分类等任务中达到最新性能,并代表一种直接适用于大型未归类网络的归纳网络嵌入方法。

Learning embeddings from large-scale networks is an open challenge. Despite the overwhelming number of existing methods, is is unclear how to exploit network structure in a way that generalizes easily to unseen nodes, edges or graphs. In this work, we look at the problem of finding inductive network embeddings in large networks without domain-dependent node/edge attributes. We propose to use a set of basic predefined local encodings as the basis of a learning algorithm. In particular, we consider the degree frequencies at different distances from a node, which can be computed efficiently for relatively short distances and a large number of nodes. Interestingly, the resulting embeddings generalize well across unseen or distant regions in the network, both in unsupervised settings, when combined with language model learning, as well as in supervised tasks, when used as additional features in a neural network. Despite its simplicity, this method achieves state-of-the-art performance in tasks such as role detection, link prediction and node classification, and represents an inductive network embedding method directly applicable to large unattributed networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源