论文标题
全球最优性在最小合规性拓扑优化框架和壳体的优化方面层次层次结构
Global optimality in minimum compliance topology optimization of frames and shells by moment-sum-of-squares hierarchy
论文作者
论文摘要
具有连续横截面参数的最小符合抗弯曲结构的设计是一项艰巨的任务,因为其固有的非凸度性。我们的贡献制定了一种策略,以促进计算所有保证在多个负载案例和自重的框架和外壳结构的全球最佳解决方案。为此,我们利用了一个事实,即刚度矩阵通常是设计变量的多项式函数,从而使我们能够在半代数可行的集合上构建等效的非线性半趋势编程公式。随后,使用套筒矩量层次结构来解决该公式,生成了一系列外部凸近近似值,单调收敛从下面收敛到原始问题的最佳。随后,可以使用curto-fialkow扁平延伸定理提取全球最佳溶液。此外,我们表明,对放松问题的解决方案进行了简单的纠正,建立了可行的上限,从而得出了一个简单的全局$ \ varepsilon $ - 最佳性的条件。当原始问题具有唯一的最低限度时,我们表明该解决方案的最佳差距为零。这些理论发现在框架和壳拓扑优化的几个示例中进行了说明,我们观察到层次结构以有限(相当小)的步骤收敛。
The design of minimum-compliance bending-resistant structures with continuous cross-section parameters is a challenging task because of its inherent non-convexity. Our contribution develops a strategy that facilitates computing all guaranteed globally optimal solutions for frame and shell structures under multiple load cases and self-weight. To this purpose, we exploit the fact that the stiffness matrix is usually a polynomial function of design variables, allowing us to build an equivalent non-linear semidefinite programming formulation over a semi-algebraic feasible set. This formulation is subsequently solved using the Lasserre moment-sum-of-squares hierarchy, generating a sequence of outer convex approximations that monotonically converges from below to the optimum of the original problem. Globally optimal solutions can subsequently be extracted using the Curto-Fialkow flat extension theorem. Furthermore, we show that a simple correction to the solutions of the relaxed problems establishes a feasible upper bound, thereby deriving a simple sufficient condition of global $\varepsilon$-optimality. When the original problem possesses a unique minimum, we show that this solution is found with a zero optimality gap in the limit. These theoretical findings are illustrated on several examples of topology optimization of frames and shells, for which we observe that the hierarchy converges in a finite (rather small) number of steps.