论文标题
Lorentz梯度估计的一类带有Schrödinger项的椭圆形P-Laplacian方程
Lorentz gradient estimates for a class of elliptic p-Laplacian equations with a Schrödinger term
论文作者
论文摘要
我们在本文中证明了全球洛伦兹在分数 - 最大函数方面的估计值,用于弱解的梯度,用于一类Plaplace椭圆方程,其中包含属于反向Hölder类的非负schrödinger电位。特别是,这类P-Laplace操作员包括退化和非脱位案例。有趣的想法是使用与谐波分析中与分布函数相关的级别不平等的有效方法。
We prove in this paper the global Lorentz estimate in term of fractional-maximal function for gradient of weak solutions to a class of p-Laplace elliptic equations containing a non-negative Schrödinger potential which belongs to reverse Hölder classes. In particular, this class of p-Laplace operator includes both degenerate and non-degenerate cases. The interesting idea is to use an efficient approach based on the level-set inequality related to the distribution function in harmonic analysis.