论文标题

在双方平面组装分区上,连接性约束

On Two-Handed Planar Assembly Partitioning with Connectivity Constraints

论文作者

Agarwal, Pankaj K., Aronov, Boris, Geft, Tzvika, Halperin, Dan

论文摘要

组装计划是机器人和自动化中的一个基本问题,涉及设计一系列动议,以将产品的单独组成部分带入产品中的最终位置。装配计划自然被视为拆卸问题,引起了组装分配问题:给定$ a $ a $ a $ a零件,找到一个子集$ s \ subset a $,称为子组件,因此可以将$ s $沿规定的方向严格地转换为无限的,而无需与$ a \ a \ a \ setMinus s $相撞。虽然可以有效地解决组装分区,但要轻松将子组件的部分放在一起。这激发了我们研究的问题,称为连接组装分区,此外还需要两个子组件中的每一个,即$ s $和$ a \ setminus s $。我们表明,这个问题是NP完整的,解决了Wilson等人提出的一个空旷的问题。 (1995)四分之一世纪前,即使$ a $由单位网格正方形组成(即$ a $是多粒子形的)。为此,我们证明了一个新的平面3-SAT变体的NP硬度,该变量对出现在同一子句中的变量的邻接要求,这可能具有独立的兴趣。从积极的一面来看,我们给出了$ O(2^k n^2)$ - 时间固定参数可拖动算法(需要低度多项式时间预处理),用于由飞机上的多边形组成的组件$ a $,其中$ n = | a | a | a | a | a | a | $和$ k = | s | $。我们还描述了一个单元格式组件的特殊情况,其中始终可以在$ o(n)$ - 时间中找到连接的分区。

Assembly planning is a fundamental problem in robotics and automation, which involves designing a sequence of motions to bring the separate constituent parts of a product into their final placement in the product. Assembly planning is naturally cast as a disassembly problem, giving rise to the assembly partitioning problem: Given a set $A$ of parts, find a subset $S\subset A$, referred to as a subassembly, such that $S$ can be rigidly translated to infinity along a prescribed direction without colliding with $A\setminus S$. While assembly partitioning is efficiently solvable, it is further desirable for the parts of a subassembly to be easily held together. This motivates the problem that we study, called connected-assembly-partitioning, which additionally requires each of the two subassemblies, $S$ and $A\setminus S$, to be connected. We show that this problem is NP-complete, settling an open question posed by Wilson et al. (1995) a quarter of a century ago, even when $A$ consists of unit-grid squares (i.e., $A$ is polyomino-shaped). Towards this result, we prove the NP-hardness of a new Planar 3-SAT variant having an adjacency requirement for variables appearing in the same clause, which may be of independent interest. On the positive side, we give an $O(2^k n^2)$-time fixed-parameter tractable algorithm (requiring low degree polynomial-time pre-processing) for an assembly $A$ consisting of polygons in the plane, where $n=|A|$ and $k=|S|$. We also describe a special case of unit-grid square assemblies, where a connected partition can always be found in $O(n)$-time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源