论文标题
坚固的车道通过网络主动适应保持控制
Robust Vehicle Lane Keeping Control with Networked Proactive Adaptation
论文作者
论文摘要
道路状况是自动驾驶汽车控制的重要环境因素。从标称状态到道路状况的急剧变化是可能导致系统故障的不确定性来源。一旦车辆遇到一个不确定的环境,例如击中冰斑,降低速度为时已晚,车辆可能会失去控制。为了提前应对未来的不确定性,我们研究了一个主动的健壮自适应控制体系结构,用于自动驾驶汽车的车道保存控制问题。数据中心通过通过时空过滤器结合天气预测和测量来产生先前的环境不确定性估计。先前的估计值有助于设计强大的标题控制器和名义纵向速度,以主动适应每个新的异常情况。然后,基于后验信息融合并使用板载测量来更新控制参数。
Road condition is an important environmental factor for autonomous vehicle control. A dramatic change in the road condition from the nominal status is a source of uncertainty that can lead to a system failure. Once the vehicle encounters an uncertain environment, such as hitting an ice patch, it is too late to reduce the speed, and the vehicle can lose control. To cope with future uncertainties in advance, we study a proactive robust adaptive control architecture for autonomous vehicles' lane-keeping control problems. The data center generates a prior environmental uncertainty estimate by combining weather forecasts and measurements from anonymous vehicles through a spatio-temporal filter. The prior estimate contributes to designing a robust heading controller and nominal longitudinal velocity for proactive adaptation to each new abnormal condition. Then the control parameters are updated based on posterior information fusion with on-board measurements.