论文标题
taylor系列在加权迪里奇莱特空间中的cesàro总结性
Cesàro summability of Taylor series in weighted Dirichlet spaces
论文作者
论文摘要
我们表明,在带有超谐波重量的单元磁盘上的每个加权dirichlet空间中,泰勒在该空间中的功能系列为$(c,α)$ - 如果$α> 1/2 $,则可以在空间的函数中总结。我们进一步表明,常数$ 1/2 $是锋利的,与磁盘代数的经典案例形成鲜明对比。
We show that, in every weighted Dirichlet space on the unit disk with superharmonic weight, the Taylor series of a function in the space is $(C,α)$-summable to the function in the norm of the space, provided that $α>1/2$. We further show that the constant $1/2$ is sharp, in marked contrast with the classical case of the disk algebra.