论文标题

二进制不同中央部分的猜想

A conjecture on different central parts of binary trees

论文作者

Pandey, Dinesh, Patra, Kamal Lochan

论文摘要

让$ω_n$是通过识别带有二进制二进制二进制二进制的rgood二进制树的根来获得的$ n $顶点的二进制树的家族。史密斯等人在题为“树的不同中部的不同中部(电子杂志),第3号,第3期,纸3.17,32 pp)中。推测在所有$ n $顶点的所有二进制树中,中心的任何两个中心之间的成对距离,质心和子树核心受到家庭的某些成员$ω_n$的最大化。我们首先获得了根系的二进制树,该树将包含子树的根数量最小化,然后证明此猜想。我们还获得了最大化这些距离的二进制树。

Let $Ω_n$ be the family of binary trees on $n$ vertices obtained by identifying the root of an rgood binary tree with a vertex of maximum eccentricity of a binary caterpillar. In the paper titled "On different middle parts of a tree (The electronic journal of combinatorics, 25 (2018), no. 3, paper 3.17, 32 pp)", Smith et al. conjectured that among all binary trees on $n$ vertices the pairwise distance between any two of center, centroid and subtree core is maximized by some member of the family $Ω_n$. We first obtain the rooted binary tree which minimizes the number of root containing subtrees and then prove this conjecture. We also obtain the binary trees which maximize these distances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源