论文标题
量子退火和开放量子系统的整数编程
Integer Programming from Quantum Annealing and Open Quantum Systems
论文作者
论文摘要
尽管量子计算为无法与经典方法无法访问的计算问题提出了有希望的解决方案,但由于当前的硬件约束,大多数量子算法尚无计算实际相关性系统的能力,而经典的对应物优于它们。为了实际上受益于量子体系结构,必须确定具有良好缩放的问题和算法,并根据可用的硬件改善相应的限制。因此,我们开发了一种算法,该算法解决了整数线性编程问题,一个经典的NP硬性问题,在量子退火器上,并研究了问题和特定于硬件的限制。这项工作介绍了如何将ILP问题映射到退火架构的形式主义,如何系统地改善利用优化的退火计划的计算以及通过仿真对退火过程进行建模。它说明了对最小主导设置问题的变质和许多身体定位的影响,并将退火结果与量子体系结构的数值模拟进行了比较。我们发现该算法的表现优于随机猜测,但仅限于小问题,并且可以调整退火时间表以降低矫正的影响。模拟定性地重现了修改后的退火时间表的算法改进,这表明这些改进起源于量子效应。
While quantum computing proposes promising solutions to computational problems not accessible with classical approaches, due to current hardware constraints, most quantum algorithms are not yet capable of computing systems of practical relevance, and classical counterparts outperform them. To practically benefit from quantum architecture, one has to identify problems and algorithms with favorable scaling and improve on corresponding limitations depending on available hardware. For this reason, we developed an algorithm that solves integer linear programming problems, a classically NP-hard problem, on a quantum annealer, and investigated problem and hardware-specific limitations. This work presents the formalism of how to map ILP problems to the annealing architectures, how to systematically improve computations utilizing optimized anneal schedules, and models the anneal process through a simulation. It illustrates the effects of decoherence and many body localization for the minimum dominating set problem, and compares annealing results against numerical simulations of the quantum architecture. We find that the algorithm outperforms random guessing but is limited to small problems and that annealing schedules can be adjusted to reduce the effects of decoherence. Simulations qualitatively reproduce algorithmic improvements of the modified annealing schedule, suggesting the improvements have origins from quantum effects.