论文标题

Davincinet:机器人辅助手术中运动和手术状态的联合预测

daVinciNet: Joint Prediction of Motion and Surgical State in Robot-Assisted Surgery

论文作者

Qin, Yidan, Feyzabadi, Seyedshams, Allan, Max, Burdick, Joel W., Azizian, Mahdi

论文摘要

本文提出了一种使用多个输入源的机器人辅助手术(RAS)中手术仪器的未来手术仪器的未来轨迹和未来手术子任务的未来轨迹的技术。这种预测是朝着共享控制和监督手术子任务自治的必要第一步。长达一分钟的手术子任务(例如缝合或超声扫描)通常具有可区分的工具运动学和视觉特征,并且可以描述为具有过渡示意图的一系列细粒度。我们提出了DavinCinet-机器人运动和手术状态预测的端到端双任务模型。 DavinCinet使用从多个数据流中提取的功能(包括机器人运动学,内镜视觉和系统事件)进行同时进行最终效应轨迹和外科手术预测。我们对收集在Da Vinci XI手术系统和JHU-ISI手势和技能评估工作集(Jigsaws)的扩展机器人内部超声(RIAS+)成像数据集评估了我们的模型。我们的模型可达到短期(0.5s)和82.11%的长期(2s)状态预测准确性,短期和5.62毫米长期的长期轨迹预测误差。

This paper presents a technique to concurrently and jointly predict the future trajectories of surgical instruments and the future state(s) of surgical subtasks in robot-assisted surgeries (RAS) using multiple input sources. Such predictions are a necessary first step towards shared control and supervised autonomy of surgical subtasks. Minute-long surgical subtasks, such as suturing or ultrasound scanning, often have distinguishable tool kinematics and visual features, and can be described as a series of fine-grained states with transition schematics. We propose daVinciNet - an end-to-end dual-task model for robot motion and surgical state predictions. daVinciNet performs concurrent end-effector trajectory and surgical state predictions using features extracted from multiple data streams, including robot kinematics, endoscopic vision, and system events. We evaluate our proposed model on an extended Robotic Intra-Operative Ultrasound (RIOUS+) imaging dataset collected on a da Vinci Xi surgical system and the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS). Our model achieves up to 93.85% short-term (0.5s) and 82.11% long-term (2s) state prediction accuracy, as well as 1.07mm short-term and 5.62mm long-term trajectory prediction error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源