论文标题
使用量子点单光源提高卫星QKD的安全关键速率
Enhancing secure key rates of satellite QKD using a quantum dot single-photon source
论文作者
论文摘要
可以使用带有轨道卫星的量子密钥分布(QKD)实现全局量子安全通信。建立的技术使用衰减的激光用作具有所谓诱饵态协议的弱相干脉冲(WCP)来源,以生成所需的单光子级脉冲。尽管这种方法是优雅的,但由于固有的多光子发射,它们以可实现的最终键为代价,从而限制了对卫星传输期望的高损坏,嘈杂的频道的限制。在这项工作中,我们通过使用由嵌入纳米线中的半导体量子点(QD)产生的真实单光子脉冲来改善这种局限性,该脉冲具有低多光子发射($ <10^{ - 6} $)和-15 db(或3.1%)的提取系统效率(或3.1%)。尽管效率有限,但QD源生成的密钥大于在相同的重复速率和链接条件下代表卫星通行证的链接条件下生成的密钥。我们预测,随着QD提取效率的现实提高到-4.0 dB(或40%),量子点QKD协议的表现优于WCP-DECOY-STATE QKD几乎是一个数量级。因此,QD源可以允许在WCP源仅失败的情况下生成安全键,例如在高频损失的情况下。我们的演示是第一个特定用例,在安全量子通信中,基于QD的单光子源显示出明显的好处,并且有可能提高基于卫星的QKD网络的生存能力和效率。
Global quantum secure communication can be achieved using quantum key distribution (QKD) with orbiting satellites. Established techniques use attenuated lasers as weak coherent pulse (WCP) sources, with so-called decoy-state protocols, to generate the required single-photon-level pulses. While such approaches are elegant, they come at the expense of attainable final key due to inherent multi-photon emission, thereby constraining secure key generation over the high-loss, noisy channels expected for satellite transmissions. In this work we improve on this limitation by using true single-photon pulses generated from a semiconductor quantum dot (QD) embedded in a nanowire, possessing low multi-photon emission ($<10^{-6}$) and an extraction system efficiency of -15 dB (or 3.1%). Despite the limited efficiency, the key generated by the QD source is greater than that generated by a WCP source under identical repetition rate and link conditions representative of a satellite pass. We predict that with realistic improvements of the QD extraction efficiency to -4.0 dB (or 40%), the quantum-dot QKD protocol outperforms WCP-decoy-state QKD by almost an order of magnitude. Consequently, a QD source could allow generation of a secure key in conditions where a WCP source would simply fail, such as in the case of high channel losses. Our demonstration is the first specific use case that shows a clear benefit for QD-based single-photon sources in secure quantum communication, and has the potential to enhance the viability and efficiency of satellite-based QKD networks.