论文标题
动力学粗糙的混乱和随机普遍性类别之间的过渡
Transition between chaotic and stochastic universality classes of kinetic roughening
论文作者
论文摘要
非均衡性空间扩展系统的动力学通常由于\ \ \ \确定性混乱或固有随机性而受到波动的主导。这反映了通用量表不变或动力学粗糙行为,这些行为可以分类为由关键指数值和磁场波动的概率分布函数(PDF)定义的通用类别。已知合适的几何约束会改变PDF的次要特征,同时保持指数不变的值,从而诱导普遍性子类。在库拉莫托 - 苏瓦辛斯基方程式上作为时空混乱的范式,我们表明,由于PDF大大改变了PDF,因此,盛行波动(混乱或随机的)的物理性质(混乱或随机)也可以改变通用性类别,同时尊重指数值。该过渡发生在随机噪声幅度的非零值时进行,可能适合实验验证。
The dynamics of non-equilibrium spatially extended systems are often dominated by fluctuations, due to e.g.\ deterministic chaos or to intrinsic stochasticity. This reflects into generic scale invariant or kinetic roughening behavior that can be classified into universality classes defined by critical exponent values and by the probability distribution function (PDF) of field fluctuations. Suitable geometrical constraints are known to change secondary features of the PDF while keeping the values of the exponents unchanged, inducing universality subclasses. Working on the Kuramoto-Sivashinsky equation as a paradigm of spatiotemporal chaos, we show that the physical nature of the prevailing fluctuations (chaotic or stochastic) can also change the universality class while respecting the exponent values, as the PDF is substantially altered. This transition takes place at a non-zero value of the stochastic noise amplitude and may be suitable for experimental verification.