论文标题
有限程度类别的连续不变的一阶逻辑
Successor-Invariant First-Order Logic on Classes of Bounded Degree
论文作者
论文摘要
我们研究了连续不变的一阶逻辑的表达能力,这是一阶逻辑的扩展,其中允许在结构上使用额外的后继关系,只要公式的有效性与有限结构上的特定继任者的选择无关。 我们表明,当程度被界定时,连续不变的一阶逻辑并不比一阶逻辑更具表现力。
We study the expressive power of successor-invariant first-order logic, which is an extension of first-order logic where the usage of an additional successor relation on the structure is allowed, as long as the validity of formulas is independent of the choice of a particular successor on finite structures. We show that when the degree is bounded, successor-invariant first-order logic is no more expressive than first-order logic.