论文标题

涵盖了晶体晶格上第一段渗透的极限形状的单调性

Covering monotonicity of the limit shapes of first passage percolation on crystal lattices

论文作者

Mikami, Tatsuya

论文摘要

本文研究了第一个通道渗透(FPP)模型:分配了立方晶格中的每个边缘一个随机通道时间,并考虑了渗透率区域$ b(t)$的行为,该行为由可以在$ t> 0 $ $ t> 0 $内从原点到达的这些顶点组成。考克斯和杜雷特(Cox)和杜雷特(Durrett)展示了渗透区域的形状定理,称归一化的区域$ b(t)/t $收敛到一定极限形状$ \ mathcal {b} $。本文介绍了在晶体晶格上定义的一般FPP模型,并显示了覆盖地图下极限形状的单调性,从而提供了对立方FPP模型的极限形状的见解。

This paper studies the first passage percolation (FPP) model: each edge in the cubic lattice is assigned a random passage time, and consideration is given to the behavior of the percolation region $B(t)$, which consists of those vertices that can be reached from the origin within a time $t > 0$. Cox and Durrett showed the shape theorem for the percolation region, saying that the normalized region $B(t)/t$ converges to some limit shape $\mathcal{B}$. This paper introduces a general FPP model defined on crystal lattices, and shows the monotonicity of the limit shapes under covering maps, thereby providing insight into the limit shape of the cubic FPP model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源