论文标题
通过级联网络的转移学习来识别和分类肺结节以进行癌症检测
Transfer Learning by Cascaded Network to identify and classify lung nodules for cancer detection
论文作者
论文摘要
肺癌是世界上最致命的疾病之一。在早期发现这种肿瘤可能是一项繁琐的任务。现有的肺结核识别的深度学习体系结构使用了大量参数的复杂体系结构。这项研究开发了一种级联的结构,可以准确地分割和分类计算机断层扫描(CT)图像上的良性或恶性肺结节。这项研究的主要贡献是介绍一个细分网络,在该网络中,在公共数据集中训练的第一阶段可以帮助识别图像,其中包括通过转移学习的任何数据集中的结节。结节的分割可改善第二阶段将结节分类为良性和恶性肿瘤。所提出的体系结构的表现优于传统方法,曲线值为95.67 \%。实验结果表明,我们提出的结构中97.96%的分类准确性优于其他简单且复杂的结构,用于对肺癌检测进行分类。
Lung cancer is one of the most deadly diseases in the world. Detecting such tumors at an early stage can be a tedious task. Existing deep learning architecture for lung nodule identification used complex architecture with large number of parameters. This study developed a cascaded architecture which can accurately segment and classify the benign or malignant lung nodules on computed tomography (CT) images. The main contribution of this study is to introduce a segmentation network where the first stage trained on a public data set can help to recognize the images which included a nodule from any data set by means of transfer learning. And the segmentation of a nodule improves the second stage to classify the nodules into benign and malignant. The proposed architecture outperformed the conventional methods with an area under curve value of 95.67\%. The experimental results showed that the classification accuracy of 97.96\% of our proposed architecture outperformed other simple and complex architectures in classifying lung nodules for lung cancer detection.