论文标题
天线增强的红外光诱导力在水性环境中具有超明敏性和超敏反应
Antenna enhanced infrared photoinduced force imaging in aqueous environment with super-resolution and hypersensitivity
论文作者
论文摘要
尖端增强的红外光谱和成像已被广泛用于尖端研究,以深入了解纳米级界面的组成,结构和功能。但是,分子单层灵敏度仅在固体/气体界面上得到证明。在水性环境中,由于悬臂振荡的强阻尼和背景IR吸收引起的敏感性降低极大地限制了尖端增强的IR纳米光谱镜的实际应用。在这里,我们证明了在水环境中与光诱导的力(PIF)显微镜和谐振天线的结合的纳米级红外光谱和成像。尖端末端和天线之间的高度密闭电磁场极大地放大了光诱导的力至可检测的水平,而通过等离子体内部反射模式的激发使环境吸收最小。在AFM尖端功能化功能化的聚二甲基硅氧烷(PDMS)层(〜1-2 nm厚度)已在具有不同大小的天线中成功鉴定出来。通过在天线上的电(e)场分布映射确认的近10 nm空间分辨率证明了来自PDMS的〜604化学键的采样体积,这强烈表明对界面光谱法的要求要求。该平台首次演示了光诱导的力显微镜在水性环境中的应用,从而提供了全新的配置,以实现高度增强的纳米级红外信号,这对于未来对水溶液环境中接口和纳米系统的研究非常有前途。
Tip enhanced IR spectra and imaging have been widely used in cutting-edge studies for the in-depth understanding of the composition, structure and function of interfaces at the nanoscale. However, molecular monolayer sensitivity has only been demonstrated on solid/gas interfaces. In aqueous environment, the reduced sensitivity due to strong damping of the cantilever oscillation and background IR absorption extremely limits the practical applications of tip enhanced IR nanospectroscopy. Here, we demonstrate hypersensitive nanoscale IR spectra and imaging in aqueous environment with the combination of photoinduced force (PiF) microscopy and resonant antennas. The highly confined electromagnetic field inbetween the tip end and antenna extremely amplifies the photoinduced force to the detectable level, while the excitation via plasmon internal reflection mode minimizes the environmental absorption. A polydimethylsiloxane (PDMS) layer (~1-2 nm thickness) functionalized on the AFM tip has been successfully identified in water with antennas of different sizes. Sampling volume of ~604 chemical bonds from PDMS was demonstrated with sub-10 nm spatial resolution confirmed by electric (E) field distribution mapping on antennas, which strongly suggests the desired requirements for interfacial spectroscopy. This platform demonstrates for the first time the application of photoinduced force microscopy in aqueous environments, providing a brand-new configuration to achieve highly enhanced nanoscale IR signals, which is extremely promising for future research of interfaces and nanosystems in aqueous environments.