论文标题

从同相/正交信号的超声超声重建的复杂卷积神经网络

Complex Convolutional Neural Networks for Ultrafast Ultrasound Image Reconstruction from In-Phase/Quadrature Signal

论文作者

Lu, Jingfeng, Millioz, Fabien, Garcia, Damien, Salles, Sebastien, Ye, Dong, Friboulet, Denis

论文摘要

由于其超高帧速率,超声超声成像仍然是超声社区中感兴趣的活跃领域。最近,基于深度学习的各种研究试图改善超声超声成像。这些方法大多数都是在射频(RF)信号上执行的。但是,数字波束形成器现在被广泛用作低成本策略。在这项工作中,我们使用复杂的卷积神经网络来重建来自I/Q信号的超声图像。我们最近描述了一种称为ID-NET的卷积神经网络体系结构,该结构利用了用于重建RF发散波超声图像的成立层。在本研究中,我们得出了该网络的复杂等效。即,在I/Q数据上运行的发散波网络(CID-NET)的复杂值开始。我们提供了实验证据,表明CID-NET提供了与从RF训练的卷积神经网络获得的图像质量相同的图像质量。即,仅使用三个I/Q图像,CID-NET会产生高质量的图像,这些图像可以与通过相干化合31 RF图像获得的图像竞争。此外,我们表明CID-NET优于单独处理I/Q信号的真实和虚构部分的直接体系结构,从而表明使用网络使用网络来利用该信号的复杂性质的I/Q信号的重要性。

Ultrafast ultrasound imaging remains an active area of interest in the ultrasound community due to its ultra-high frame rates. Recently, a wide variety of studies based on deep learning have sought to improve ultrafast ultrasound imaging. Most of these approaches have been performed on radio frequency (RF) signals. However, inphase/quadrature (I/Q) digital beamformers are now widely used as low-cost strategies. In this work, we used complex convolutional neural networks for reconstruction of ultrasound images from I/Q signals. We recently described a convolutional neural network architecture called ID-Net, which exploited an inception layer designed for reconstruction of RF diverging-wave ultrasound images. In the present study, we derive the complex equivalent of this network; i.e., the Complex-valued Inception for Diverging-wave Network (CID-Net) that operates on I/Q data. We provide experimental evidence that CID-Net provides the same image quality as that obtained from RF-trained convolutional neural networks; i.e., using only three I/Q images, the CID-Net produces high-quality images that can compete with those obtained by coherently compounding 31 RF images. Moreover, we show that CID-Net outperforms the straightforward architecture that consists of processing the real and imaginary parts of the I/Q signal separately, which thereby indicates the importance of consistently processing the I/Q signals using a network that exploits the complex nature of such signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源