论文标题

重新审视的Elser核和

The Elser nuclei sum revisited

论文作者

Grinberg, Darij

论文摘要

修复有限的无向图$γ$和$γ$的顶点$ v $。令$ e $为$γ$的边缘。如果$γ$的每个边缘具有至少一个可以通过$ f $ path的$ V $连接到$ v $的$ f $ f $ $ e $ pandemic的子集$ f $ f $ f $ f $ f $ e $ e $。 1984年,埃尔瑟(Elser)表明$ \ left(-1 \ right)^{\ left |的总和所有大流行子集的$ f $ $ e $ $ e $的f \ right |} $如果$ e \ e \ neq \ varnothing $。我们通过反向签名的相互作用给出了简单的证明,并讨论变体,概括和改进,揭示了与抽象凸度(抗抗原剂的概念)和离散摩尔斯理论的联系。

Fix a finite undirected graph $Γ$ and a vertex $v$ of $Γ$. Let $E$ be the set of edges of $Γ$. We call a subset $F$ of $E$ pandemic if each edge of $Γ$ has at least one endpoint that can be connected to $v$ by an $F$-path (i.e., a path using edges from $F$ only). In 1984, Elser showed that the sum of $\left(-1\right)^{\left| F\right|}$ over all pandemic subsets $F$ of $E$ is $0$ if $E\neq \varnothing$. We give a simple proof of this result via a sign-reversing involution, and discuss variants, generalizations and refinements, revealing connections to abstract convexity (the notion of an antimatroid) and discrete Morse theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源