论文标题

威胁:使用分层神经网络CVE2CWE

ThreatZoom: CVE2CWE using Hierarchical Neural Network

论文作者

Aghaei, Ehsan, Shadid, Waseem, Al-Shaer, Ehab

论文摘要

常见的漏洞和暴露(CVE)代表共享公开知名度信息安全漏洞的标准手段。为了了解软件或配置缺陷的目的,将一个或多个CVE分为共同的弱点(CWE)类,以及这些漏洞所启用的潜在影响,并识别用于检测或防止利用的手段。由于CVE到CVE分类主要由域专家手动执行,因此成千上万的关键和新CVE仍然没有分类,但它们是不可拨打的。这显着限制了CVE的效用,并减慢了积极的威胁缓解。本文介绍了将CVE分类为CWES的第一个自动工具。威胁使用一种新颖的学习算法,该算法采用了自适应层次神经网络,该网络根据文本分析得分和分类错误来调整其权重。它会使用从CVE的描述中提取的统计和语义功能自动估算与CVE实例相对应的CWE类。该工具由MITER和国家漏洞数据库(NVD)提供的各种数据集进行了严格的测试。将CVE实例分类到其正确的CWE类别的准确性为92%(细粒度)和NVD数据集的94%(粗粒),尽管小型堆肥小堆,MITER数据集的精度为75%(Fine-Grain)和90%(粗粒)。

The Common Vulnerabilities and Exposures (CVE) represent standard means for sharing publicly known information security vulnerabilities. One or more CVEs are grouped into the Common Weakness Enumeration (CWE) classes for the purpose of understanding the software or configuration flaws and potential impacts enabled by these vulnerabilities and identifying means to detect or prevent exploitation. As the CVE-to-CWE classification is mostly performed manually by domain experts, thousands of critical and new CVEs remain unclassified, yet they are unpatchable. This significantly limits the utility of CVEs and slows down proactive threat mitigation. This paper presents the first automatic tool to classify CVEs to CWEs. ThreatZoom uses a novel learning algorithm that employs an adaptive hierarchical neural network which adjusts its weights based on text analytic scores and classification errors. It automatically estimates the CWE classes corresponding to a CVE instance using both statistical and semantic features extracted from the description of a CVE. This tool is rigorously tested by various datasets provided by MITRE and the National Vulnerability Database (NVD). The accuracy of classifying CVE instances to their correct CWE classes are 92% (fine-grain) and 94% (coarse-grain) for NVD dataset, and 75% (fine-grain) and 90% (coarse-grain) for MITRE dataset, despite the small corpus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源