论文标题

关于Nilmanifolds上RICCI曲率的签名

On the signature of the Ricci curvature on nilmanifolds

论文作者

Arroyo, Romina M., Lafuente, Ramiro A.

论文摘要

我们彻底描述了关于任意实际的nilpotent Lie ofter的RICCI曲率的特征。证明的主要思想是利用RICCI内态核的内核与一般线性群体一定表示中的闭合轨道之间的联系,我们证明,这证明了nilmanifolds Ricci曲率的“真实GIT”框架。

We completely describe the signatures of the Ricci curvature of left-invariant Riemannian metrics on arbitrary real nilpotent Lie groups. The main idea in the proof is to exploit a link between the kernel of the Ricci endomorphism and closed orbits in a certain representation of the general linear group, which we prove using the `real GIT' framework for the Ricci curvature of nilmanifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源