论文标题
关于Nilmanifolds上RICCI曲率的签名
On the signature of the Ricci curvature on nilmanifolds
论文作者
论文摘要
我们彻底描述了关于任意实际的nilpotent Lie ofter的RICCI曲率的特征。证明的主要思想是利用RICCI内态核的内核与一般线性群体一定表示中的闭合轨道之间的联系,我们证明,这证明了nilmanifolds Ricci曲率的“真实GIT”框架。
We completely describe the signatures of the Ricci curvature of left-invariant Riemannian metrics on arbitrary real nilpotent Lie groups. The main idea in the proof is to exploit a link between the kernel of the Ricci endomorphism and closed orbits in a certain representation of the general linear group, which we prove using the `real GIT' framework for the Ricci curvature of nilmanifolds.