论文标题

半导体碳纳米管中复杂折射率的巨型栅极可调性

Giant gate-tunability of complex refractive index in semiconducting carbon nanotubes

论文作者

Song, Baokun, Liu, Fang, Wang, Haonan, Miao, Jinshui, Chen, Yueli, Kumar, Pawan, Zhang, Huiqin, Liu, Xiwen, Gu, Honggang, Stach, Eric A., Liang, Xuelei, Liu, Shiyuan, Fakhraai, Zahra, Jariwala, Deep

论文摘要

对于从显示器到激光和光学通信的许多应用,材料中的电荷光性能是可取的。在大多数二维薄膜和其他量子限制材料中,这些常数已被准确测量。但是,由于在大面积上缺乏电子纯度和空间同质性,因此尚待测量单壁纳米管(SWCNT)的光学常数。在这里,我们测量具有光谱椭圆法的超薄高纯度(> 99%)半导体单壁碳纳米管(S-SWCNT)膜的基本光学常数。我们提取S-SWCNT膜的栅极可调复杂折射率,并观察到实际折射率(〜11.2%或绝对值> 0.2)的巨大调节和灭绝系数(〜11.6%)(〜11.6%)(IR近帧)(IR)所引起的电气(1.3-1.55μm)的启动范围(1.3-1.55μm)高于所有现有的电气范围。 范围。我们通过组合S-SWCNT和单层MOS2异质结构,进一步设计了多层IR反射阶段调制器堆栈,该组结构可以在1600 nm波长下以<200 nm的总堆栈厚度达到> 45°反射阶段调制。我们的结果凸显了S-SWCNT是电信应用中红外光子学和电镜的有前途的材料系统。

Electrically-tunable optical properties in materials are desirable for many applications ranging from displays to lasing and optical communication. In most two-dimensional thin-films and other quantum confined materials, these constants have been measured accurately. However, the optical constants of single wall nanotubes (SWCNT) as a function of electrostatic tuning are yet to be measured due to lack of electronic purity and spatial homogeneity over large areas. Here, we measure the basic optical constants of ultrathin high-purity (>99%) semiconducting single wall carbon nanotube (s-SWCNT) films with spectroscopic ellipsometry. We extract the gate-tunable complex refractive index of s-SWCNT films and observe giant modulation of the real refractive index (~11.2% or an absolute value of >0.2) and extinction coefficient (~11.6%) in the near-infrared (IR) region (1.3-1.55 μm) induced by the applied electric field significantly higher than all existing electro-optic semiconductors in this wavelength range. We further design a multilayer IR reflection phase modulator stack by combining s-SWCNT and monolayer MoS2 heterostructures that can attain >45° reflection phase modulation at 1600 nm wavelength for < 200 nm total stack thickness. Our results highlight s-SWCNT as a promising material system for infrared photonics and electro-optics in telecommunication applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源