论文标题
大脑皮层中金字塔神经元的计算能力
Computational capacity of pyramidal neurons in the cerebral cortex
论文作者
论文摘要
皮质锥体神经元的电活动由结构稳定,形态复杂的轴突树突树支持。轴突和树突之间的解剖学差异在其长度或口径方面分别反映了基本的功能专业,分别用于神经信息的输入或输出。为了正确评估锥体神经元的计算能力,我们分析了来自NeuroMorpho.org数据库的三维数字重建的广泛数据集,并量化了小鼠,人类或人类泥沙的不同区域和层次的基本树突状或轴突形态测量。基于获得的形态计量数据,对神经元电尖峰涉及的离子总数和类型的物理估计,结合了神经递质释放的能量学和活性大脑消耗的葡萄糖所激发的信号,支持在热力学允许的高效允许的blodymantically允许的blodymantymantically允许的blodymantymantical允许的blodymantymantically允许的blandauer landauer landauer lodauer lodauer logerrations of Irrevorportions of Irreverations of Irreverations。电压感应S4蛋白$α$ helices na $^{+} $,k $^{+} $或Ca $^{2+} $ ion频道非常适合作为单个Landauer基本逻辑操作,然后将其放大的单个Landauer基本逻辑操作可将其放大,从而可以通过选择性的离子通道来扩展。计算门控的这种微型化允许在人体大脑皮层中执行超过1.2个Zetta逻辑操作,而不会通过释放的热量燃烧大脑。
The electric activities of cortical pyramidal neurons are supported by structurally stable, morphologically complex axo-dendritic trees. Anatomical differences between axons and dendrites in regard to their length or caliber reflect the underlying functional specializations, for input or output of neural information, respectively. For a proper assessment of the computational capacity of pyramidal neurons, we have analyzed an extensive dataset of three-dimensional digital reconstructions from the NeuroMorpho.Org database, and quantified basic dendritic or axonal morphometric measures in different regions and layers of the mouse, rat or human cerebral cortex. Physical estimates of the total number and type of ions involved in neuronal electric spiking based on the obtained morphometric data, combined with energetics of neurotransmitter release and signaling fueled by glucose consumed by the active brain, support highly efficient cerebral computation performed at the thermodynamically allowed Landauer limit for implementation of irreversible logical operations. Individual proton tunneling events in voltage-sensing S4 protein $α$-helices of Na$^{+}$, K$^{+}$ or Ca$^{2+}$ ion channels are ideally suited to serve as single Landauer elementary logical operations that are then amplified by selective ionic currents traversing the open channel pores. This miniaturization of computational gating allows the execution of over 1.2 zetta logical operations per second in the human cerebral cortex without combusting the brain by the released heat.