论文标题

使用AI进行热情绪识别:评论标准设计和数据中的问题和局限性

The Use of AI for Thermal Emotion Recognition: A Review of Problems and Limitations in Standard Design and Data

论文作者

Ordun, Catherine, Raff, Edward, Purushotham, Sanjay

论文摘要

随着对Covid-19筛查的热图像的关注,公共部门可能会认为有新的机会将热力作为计算机视觉和AI的方式。自90年代末以来,热生理研究一直在进行。这项研究在于医学,心理学,机器学习,光学和情感计算的交集。我们将回顾有关面部情绪识别的热量与RGB成像的已知因素。但是我们还建议,热图像可以为计算机视觉提供半匿名的方式,而RGB因面部识别而受到困扰。但是,采用热图像作为任何以人为中心的AI任务的来源的过渡并不容易,并且依赖于在多个人口统计学和彻底验证中的高保真数据源的可用性。本文将读者简要介绍了热力费中的机器学习以及收集和开发用于AI培训的热力FER数据的局限性。我们的动机是为热力FER的最新进展提供介绍性概述,并激发有关当前数据集局限性的对话。

With the increased attention on thermal imagery for Covid-19 screening, the public sector may believe there are new opportunities to exploit thermal as a modality for computer vision and AI. Thermal physiology research has been ongoing since the late nineties. This research lies at the intersections of medicine, psychology, machine learning, optics, and affective computing. We will review the known factors of thermal vs. RGB imaging for facial emotion recognition. But we also propose that thermal imagery may provide a semi-anonymous modality for computer vision, over RGB, which has been plagued by misuse in facial recognition. However, the transition to adopting thermal imagery as a source for any human-centered AI task is not easy and relies on the availability of high fidelity data sources across multiple demographics and thorough validation. This paper takes the reader on a short review of machine learning in thermal FER and the limitations of collecting and developing thermal FER data for AI training. Our motivation is to provide an introductory overview into recent advances for thermal FER and stimulate conversation about the limitations in current datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源