论文标题
基于结果回归的条件平均治疗效果的估计
Outcome regression-based estimation of conditional average treatment effect
论文作者
论文摘要
该研究是关于对以下问题进行系统调查的。首先,我们构建了不同结果回归的估计值,分别在True(Oracle),参数,非参数和半参数降低结构下分别为条件平均治疗效应。其次,根据相应的渐近方差函数,在正确指定模型时,我们回答以下问题:渐近效率的排名一般而言是什么?在回归函数的一系列参数中,效率与给定协变量的隶属关系有何关系?带宽和内核功能选择的角色对估计效率有何影响?在哪种情况下,在哪种情况下,应在半摩匹层降低缩小回归结构下使用估计量?作为副产品,结果表明,基于结果回归的任何估计均应比任何基于基于反相反的加权估计的估计效率更高。所有这些结果都对基于结果回归的估计进行了相对完整的了解,以至于理论结论可以在可以将多个估计应用于同一问题时为实际使用提供指导。进行了几项仿真研究,以检查有限样本案例中这些估计值的性能,并分析了实际数据集以进行例证。
The research is about a systematic investigation on the following issues. First, we construct different outcome regression-based estimators for conditional average treatment effect under, respectively, true (oracle), parametric, nonparametric and semiparametric dimension reduction structure. Second, according to the corresponding asymptotic variance functions, we answer the following questions when supposing the models are correctly specified: what is the asymptotic efficiency ranking about the four estimators in general? how is the efficiency related to the affiliation of the given covariates in the set of arguments of the regression functions? what do the roles of bandwidth and kernel function selections play for the estimation efficiency; and in which scenarios should the estimator under semiparametric dimension reduction regression structure be used in practice? As a by-product, the results show that any outcome regression-based estimation should be asymptotically more efficient than any inverse probability weighting-based estimation. All these results give a relatively complete picture of the outcome regression-based estimation such that the theoretical conclusions could provide guidance for practical use when more than one estimations can be applied to the same problem. Several simulation studies are conducted to examine the performances of these estimators in finite sample cases and a real dataset is analyzed for illustration.