论文标题

朝着实时有限的势势对热组织的软组织进行热组织的热静脉效果分析

Towards real-time finite-strain anisotropic thermo-visco-elastodynamic analysis of soft tissues for thermal ablative therapy

论文作者

Zhang, Jinao, Lay, Remi Jacob, Roberts, Stuart K., Chauhan, Sunita

论文摘要

对软组织温度的准确预测对于用于热消融的计算机辅助处理系统至关重要。它可用于预测组织温度和消融量,用于个性化治疗计划和图像引导的干预措施。从数值上讲,它需要对耦合的计算生物学转移和生物力学以及有效的解决方案程序进行完整的非线性建模。但是,现有的研究考虑了仅生物加热分析或无完全耦合的非线性分析的耦合线性分析。我们基于有限的热弹性和总拉格朗日显式显式动力学,提出了一种耦合的热 - visco-hyperolacy有限元算法。它考虑了(i)在软组织变形和(ii)由于热膨胀/收缩而导致的软组织变形的(i)生物加热转移的非线性分析。提出的方法解释了软组织的各向异性,有限型,依赖温度,热和粘弹性行为,并使用GPU加速度实施实时计算。我们还使用肝脏中热消融的临床应用来证明了临床应用的转化益处。提出方法的关键优点是,它可以实现柔软组织的各向异性,有限型,有限型,温度依赖性,热和粘弹性行为,而不是线性弹性,线性粘弹性,以及单次模型在现有方法中。它还为计算机辅助处理系统提供了高的计算速度,以使操作员能够准确模拟热消融,并立即可视化组织温度和消融区。

Accurate and efficient prediction of soft tissue temperatures is essential to computer-assisted treatment systems for thermal ablation. It can be used to predict tissue temperatures and ablation volumes for personalised treatment planning and image-guided intervention. Numerically, it requires full nonlinear modelling of the coupled computational bioheat transfer and biomechanics, and efficient solution procedures; however, existing studies considered the bioheat analysis alone or the coupled linear analysis, without the fully coupled nonlinear analysis. We present a coupled thermo-visco-hyperelastic finite element algorithm, based on finite-strain thermoelasticity and total Lagrangian explicit dynamics. It considers the coupled nonlinear analysis of (i) bioheat transfer under soft tissue deformations and (ii) soft tissue deformations due to thermal expansion/shrinkage. The presented method accounts for anisotropic, finite-strain, temperature-dependent, thermal, and viscoelastic behaviours of soft tissues, and it is implemented using GPU acceleration for real-time computation. We also demonstrate the translational benefits of the presented method for clinical applications using a simulation of thermal ablation in the liver. The key advantage of the presented method is that it enables full nonlinear modelling of the anisotropic, finite-strain, temperature-dependent, thermal, and viscoelastic behaviours of soft tissues, instead of linear elastic, linear viscoelastic, and thermal-only modelling in the existing methods. It also provides high computational speeds for computer-assisted treatment systems towards enabling the operator to simulate thermal ablation accurately and visualise tissue temperatures and ablation zones immediately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源