论文标题

无线蜂窝网络中联合学习的激励机制:拍卖方法

An Incentive Mechanism for Federated Learning in Wireless Cellular network: An Auction Approach

论文作者

Le, Tra Huong Thi, Tran, Nguyen H., Tun, Yan Kyaw, Nguyen, Minh N. H., Pandey, Shashi Raj, Han, Zhu, Hong, Choong Seon

论文摘要

联合学习(FL)是一个分布式学习框架,可以处理机器学习中的分布式问题,并且仍然可以保证高学习成绩。但是,所有用户都将牺牲自己的资源来加入FL算法是不切实际的。这激发了我们研究FL的激励机制设计。在本文中,我们考虑了一个涉及一个基站(BS)和多个移动用户的FL系统。移动用户使用自己的数据来训练本地机器学习模型,然后将受过训练的模型发送到生成初始模型,收集本地模型并构建全局模型的BS。然后,我们将BS和移动用户之间的激励机制作为拍卖游戏,在该游戏中,BS是拍卖师,移动用户是卖家。在拟议的游戏中,每个移动用户都根据移动用户参与FL的最低能源成本提交出价。为了决定拍卖中的赢家并最大程度地提高社会福利,我们提出了原始的双重贪婪拍卖机制。提出的机制可以保证三种经济特性,即真实性,个人理性和效率。最后,数值结果证明了我们提出的机制的性能有效性。

Federated Learning (FL) is a distributed learning framework that can deal with the distributed issue in machine learning and still guarantee high learning performance. However, it is impractical that all users will sacrifice their resources to join the FL algorithm. This motivates us to study the incentive mechanism design for FL. In this paper, we consider a FL system that involves one base station (BS) and multiple mobile users. The mobile users use their own data to train the local machine learning model, and then send the trained models to the BS, which generates the initial model, collects local models and constructs the global model. Then, we formulate the incentive mechanism between the BS and mobile users as an auction game where the BS is an auctioneer and the mobile users are the sellers. In the proposed game, each mobile user submits its bids according to the minimal energy cost that the mobile users experiences in participating in FL. To decide winners in the auction and maximize social welfare, we propose the primal-dual greedy auction mechanism. The proposed mechanism can guarantee three economic properties, namely, truthfulness, individual rationality and efficiency. Finally, numerical results are shown to demonstrate the performance effectiveness of our proposed mechanism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源