论文标题
对Fire-2 Zoom-In模拟中大型星系的大小和恒星质量表面密度的现实模拟观察
Realistic mock observations of the sizes and stellar mass surface densities of massive galaxies in FIRE-2 zoom-in simulations
论文作者
论文摘要
星系尺寸 - 螺纹质量和中央表面密度 - 星质量关系是星系形成模型的观察限制。然而,由于各种观察效应,从观察到的恒星发射中推断出星系的物理大小并非平凡。因此,希望从模拟中进行前向模式的尺寸。在这项工作中,我们使用{\ skirt}尘埃辐射传输代码来生成大型星系的合成观测($ m _ {*} \ sim10^{11}} \,\ rm {m _ {\ odot}} $ $ m _ {\ rm {halo}} \ sim10^{12.5} \,\ rm {m _ {\ odot}} $从高分辨率宇宙缩放模拟中,这些模拟在现实环境(FIRE)项目中构成反馈的一部分。本文中使用的模拟包括明确的恒星反馈,但没有主动的银河核(AGN)反馈。从每个模拟观察中,我们可以推断出有效半径($ r_e $),以及此半径内的恒星质量表面密度,在$ 1 \,\ rm {kpc} $($σ_e$和$σ_1$)内。我们首先研究了固有的半质量半径和恒星质量表面密度可以从可观察到的情况下。预测的大小和表面密度在两个固有值的倍数之内。然后,我们将预测与观察到的尺寸质量关系以及$σ_1-m_ \ star $和$σ_e-m_ \ star $关系进行比较。在$ z \ gtrsim2 $时,模拟的大型星系与观察缩放关系一般一致。在$ z \ Lessim2 $的情况下,它们演变为过于紧凑,但仍然在恒星形成,在恒星质量和红移制度中,其中许多应该淬火。我们的结果表明,为了降低模拟大型星系的中心密度,必须将一些其他反馈来源(例如AGN驱动的流出)降低,以使它们与$ z \ lyssim2 $的观察结果一致。
The galaxy size-stellar mass and central surface density-stellar mass relationships are observational constraints on galaxy formation models. However, inferring the physical size of a galaxy from observed stellar emission is non-trivial due to various observational effects. Consequently, forward-modeling light-based sizes from simulations is desirable. In this work, we use the {\skirt} dust radiative transfer code to generate synthetic observations of massive galaxies ($M_{*}\sim10^{11}\,\rm{M_{\odot}}$ at $z=2$, hosted by haloes of mass $M_{\rm{halo}}\sim10^{12.5}\,\rm{M_{\odot}}$) from high-resolution cosmological zoom-in simulations that form part of the Feedback In Realistic Environments (FIRE) project. The simulations used in this paper include explicit stellar feedback but no active galactic nucleus (AGN) feedback. From each mock observation, we infer the effective radius ($R_e$), as well as the stellar mass surface density within this radius and within $1\,\rm{kpc}$ ($Σ_e$ and $Σ_1$, respectively). We first investigate how well the intrinsic half-mass radius and stellar mass surface density can be inferred from observables. The predicted sizes and surface densities are within a factor of two of the intrinsic values. We then compare our predictions to the observed size-mass relationship and the $Σ_1-M_\star$ and $Σ_e-M_\star$ relationships. At $z\gtrsim2$, the simulated massive galaxies are in general agreement with observational scaling relations. At $z\lesssim2$, they evolve to become too compact but still star-forming, in the stellar mass and redshift regime where many of them should be quenched. Our results suggest that some additional source of feedback, such as AGN driven outflows, is necessary in order to decrease the central densities of the simulated massive galaxies to bring them into agreement with observations at $z\lesssim2$.