论文标题
Newell-littlewood数字II:扩展的号角不平等现象
Newell-Littlewood numbers II: extended Horn inequalities
论文作者
论文摘要
Newell-littlewood Number $ n_ {μ,ν,λ} $是稳定限制的经典谎言组的Weyl模块的张量产物。对于哪些分区的三元组$(μ,ν,λ)$ $ n_ {μ,ν,λ}> 0 $保持? Littlewood-Richardson系数案例是通过Horn不等式解决的(在A. Klyachko和A. Knutson-T。Tao的工作中)。我们将这些著名的线性不平等扩展到一个更大的家庭,这暗示了一般的解决方案。
The Newell-Littlewood numbers $N_{μ,ν,λ}$ are tensor product multiplicities of Weyl modules for classical Lie groups, in the stable limit. For which triples of partitions $(μ,ν,λ)$ does $N_{μ,ν,λ}>0$ hold? The Littlewood-Richardson coefficient case is solved by the Horn inequalities (in work of A. Klyachko and A. Knutson-T. Tao). We extend these celebrated linear inequalities to a much larger family, suggesting a general solution.