论文标题
盲目面部修复的渐进语义感知样式转换
Progressive Semantic-Aware Style Transformation for Blind Face Restoration
论文作者
论文摘要
面部修复在面部图像处理中很重要,并且近年来已经广泛研究了。但是,以前的作品通常无法为现实世界低品质(LQ)面部图像产生合理的高质量(HQ)结果。在本文中,我们提出了一个新的渐进语义感知样式转换框架,名为PSFR-GAN,以进行面部修复。具体而言,我们通过语义感知的样式转换制定了LQ Face图像作为多规模的渐进式恢复过程的修复,而不是使用编码器框架作为以前的方法。鉴于一对LQ面图像及其相应的解析图,我们首先生成了输入的多尺度金字塔,然后逐步调节不同规模的特征,从以语义感知的样式转移方式从粗到五个特征。与以前的网络相比,提出的PSFR-GAN完全使用了来自输入对的不同尺度的语义(解析图)和像素(LQ图像)空间信息。此外,我们进一步引入了语义意识样式损失,该损失可以分别计算每个语义区域的特征样式损失,以改善面部纹理的细节。最后,我们预留了一个面部解析网络,该网络可以从现实世界中的LQ脸部图像中产生不错的解析图。实验结果表明,我们经过合成数据训练的模型不仅可以为合成LQ输入产生更现实的高分辨率结果,而且与最先进的方法相比,还可以更好地推广到天然LQ面图像。代码可在https://github.com/chaofengc/psfrgan上找到。
Face restoration is important in face image processing, and has been widely studied in recent years. However, previous works often fail to generate plausible high quality (HQ) results for real-world low quality (LQ) face images. In this paper, we propose a new progressive semantic-aware style transformation framework, named PSFR-GAN, for face restoration. Specifically, instead of using an encoder-decoder framework as previous methods, we formulate the restoration of LQ face images as a multi-scale progressive restoration procedure through semantic-aware style transformation. Given a pair of LQ face image and its corresponding parsing map, we first generate a multi-scale pyramid of the inputs, and then progressively modulate different scale features from coarse-to-fine in a semantic-aware style transfer way. Compared with previous networks, the proposed PSFR-GAN makes full use of the semantic (parsing maps) and pixel (LQ images) space information from different scales of input pairs. In addition, we further introduce a semantic aware style loss which calculates the feature style loss for each semantic region individually to improve the details of face textures. Finally, we pretrain a face parsing network which can generate decent parsing maps from real-world LQ face images. Experiment results show that our model trained with synthetic data can not only produce more realistic high-resolution results for synthetic LQ inputs and but also generalize better to natural LQ face images compared with state-of-the-art methods. Codes are available at https://github.com/chaofengc/PSFRGAN.