论文标题

有效的加强学习开发与RLZOO

Efficient Reinforcement Learning Development with RLzoo

论文作者

Ding, Zihan, Yu, Tianyang, Huang, Yanhua, Zhang, Hongming, Li, Guo, Guo, Quancheng, Mai, Luo, Dong, Hao

论文摘要

许多研究人员和开发人员正在探索在其应用中采用深度强化学习(DRL)技术的探索。但是,他们经常发现这种采用挑战。现有的DRL库为原型DRL剂(即模型),定制代理以及比较DRL代理的性能提供了不良的支持。结果,开发人员经常报告在开发DRL代理方面的效率较低。在本文中,我们介绍了RLZOO,这是一个新的DRL库,旨在使DRL代理的开发有效。 RLZOO为开发人员提供了(i)用于原型DRL代理的高级但灵活的API,并进一步定制代理以获得最佳性能,(ii)一个模型动物园,用户可以在该模型中导入广泛的DRL代理并轻松比较其性能,并且(III)可以自动构建DRL Agents与自定义组成的代理人(可以改善定制的代理人)的算法(III)。评估结果表明,RLZOO可以有效地降低DRL代理的开发成本,同时与现有的DRL库可比性相当。

Many researchers and developers are exploring for adopting Deep Reinforcement Learning (DRL) techniques in their applications. They however often find such an adoption challenging. Existing DRL libraries provide poor support for prototyping DRL agents (i.e., models), customising the agents, and comparing the performance of DRL agents. As a result, the developers often report low efficiency in developing DRL agents. In this paper, we introduce RLzoo, a new DRL library that aims to make the development of DRL agents efficient. RLzoo provides developers with (i) high-level yet flexible APIs for prototyping DRL agents, and further customising the agents for best performance, (ii) a model zoo where users can import a wide range of DRL agents and easily compare their performance, and (iii) an algorithm that can automatically construct DRL agents with custom components (which are critical to improve agent's performance in custom applications). Evaluation results show that RLzoo can effectively reduce the development cost of DRL agents, while achieving comparable performance with existing DRL libraries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源