论文标题
线束的体积作为一般非还原方案的限制
Volumes of line bundles as limits on generically nonreduced schemes
论文作者
论文摘要
线束的体积是根据LIMSUP定义的。这是一个limsup是一个限制,这是一个基本问题。已经表明,在一般减少的方案上总是如此。我们表明,在两类方案中,体积是限制的限制,这些方案不一定是一定会降低的:编码型的一种投射品种的亚化化,使它们的最大尺寸组成部分包含正常点和投射性方案,其nilradical squared等于零。
The volume of a line bundle is defined in terms of a limsup. It is a fundamental question whether this limsup is a limit. It has been shown that this is always the case on generically reduced schemes. We show that volumes are limits in two classes of schemes that are not necessarily generically reduced: codimension one subschemes of projective varieties such that their components of maximal dimension contain normal points and projective schemes whose nilradical squared equals zero.