论文标题

使用任意多项式混乱的非线性复杂网络中多尺度弹性的不确定性定量

Uncertainty Quantification of Multi-Scale Resilience in Nonlinear Complex Networks using Arbitrary Polynomial Chaos

论文作者

Zou, Mengbang, Fragonara, Luca Zanotti, Guo, Weisi

论文摘要

弹性表征了系统在扰动发生时保留其原始功能的能力。在过去的几年中,我们的注意力主要集中在小规模的弹性上,但是考虑到组件之间相互作用的大规模网络中的弹性的理解是有限的。即使,宏观和微弹性模式的最新研究已经开发了分析工具,可以分析跨网络尺度的拓扑与动态之间的关系。大规模网络系统中不确定性的影响尚不清楚,尤其是当连接节点之间的不确定性级联时。为了量化网络分辨率(宏至微观)之间的弹性不确定性,本文开发了一种任意多项式混乱(APC)扩展方法,以估算具有任意分布的参数不确定性的弹性。这是我们第一次,特别重要的是,我们有能力确定节点在失去其弹性以及不同模型参数如何促进这种风险方面的概率。我们使用通用的联网双稳定系统对此进行测试,这将有助于从业者了解宏观尺度行为并进行微尺度干预措施。

Resilience characterizes a system's ability to retain its original function when perturbations happen. In the past years our attention mainly focused on small-scale resilience, yet our understanding of resilience in large-scale network considering interactions between components is limited. Even though, recent research in macro and micro resilience pattern has developed analytical tools to analyze the relationship between topology and dynamics across network scales. The effect of uncertainty in a large-scale networked system is not clear, especially when uncertainties cascade between connected nodes. In order to quantify resilience uncertainty across the network resolutions (macro to micro),an arbitrary polynomial chaos (aPC) expansion method is developed in this paper to estimate the resilience subject to parameter uncertainties with arbitrary distributions. For the first time and of particular importance, is our ability to identify the probability of a node in losing its resilience and how the different model parameters contribute to this risk. We test this using a generic networked bi-stable system and this will aid practitioners to both understand macro-scale behaviour and make micro-scale interventions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源