论文标题
有关其差分差异操作员的整个功能的独立性
Unicity on entire function concerning its differential-difference operators
论文作者
论文摘要
在本文中,我们研究了$ \ mathbb {c}^{n} $的整个功能的差分差异多项式的唯一性。我们证明了以下结果:让$ f(z)$是$ \ mathbb {c}^{n} $ hystrorder of throfl-ordore的$ hyprorder of hyper-order的$ bys hyper-order by Baty by $ 1 $和$ g(z)= b _ { - 1}+\ sum_ {i = 0}^{n} b_ {i} f^{(k_ {i})}(z+η_{i})$ $ \ mathbb {c}^{n} $,$ k_ {i} \ geq0(i = 0 \ ldots,n)$是整数,$η_{i}(i = 0 \ ldots,n)$是有限的值。令$ a_ {1}(z)\ not \ equiv \ infty,a_ {2}(z)\ not \ equiv \ equiv \ infty $为$ \ mathbb {c}^{n} $的$ f(z)$的两个独特的小毛素函数。如果$ f(z)$和$ g(z)$ share $ a_ {1}(z)$ cm和$ a_ {2}(z)$ im。那么要么$ f(z)\ equiv g(z)$或$ a_ {1} = 2a_ {2} = 2 $,$$ f(z)\ equiv e^{2p} -2p} -2e^{p} +2,$$和$ g($ g(z)和$ g(Z) $ \ mathbb {c}^{n} $。特别是在$ g(z)=(δ_η^{n} f(z))^{k} $的情况下,我们获得$ f(z)\ equiv(δ_η^{n} f(z)f(z))^{k} $。
In this paper, we study the uniqueness of the differential-difference polynomials of entire functions on $\mathbb{C}^{n}$. We prove the following result: Let $f(z)$ be a transcendental entire function on $\mathbb{C}^{n}$ of hyper-order less than $1$ and $g(z)=b_{-1}+\sum_{i=0}^{n}b_{i}f^{(k_{i})}(z+η_{i})$, where $b_{-1}$ and $b_{i} (i=0\ldots,n)$ are small meromorphic functions of $f$ on $\mathbb{C}^{n}$, $k_{i}\geq0 (i=0\ldots,n)$ are integers, and $η_{i} (i=0\ldots,n)$ are finite values. Let $a_{1}(z)\not\equiv\infty, a_{2}(z)\not\equiv\infty$ be two distinct small meromorphic functions of $f(z)$ on $\mathbb{C}^{n}$. If $f(z)$ and $g(z)$ share $a_{1}(z)$ CM, and $a_{2}(z)$ IM. Then either $f(z)\equiv g(z)$ or $a_{1}=2a_{2}=2$, $$f(z)\equiv e^{2p}-2e^{p}+2,$$ and $$g(z)\equiv e^{p},$$ where $p(z)$ is a non-constant entire function on $\mathbb{C}^{n}$. Especially, in the case of $g(z)=(Δ_η^{n}f(z))^{k}$, we obtain $f(z)\equiv (Δ_η^{n}f(z))^{k}$.