论文标题

在正确的位置种植树:建议使用算法融合的合适地点种植树木

Planting trees at the right places: Recommending suitable sites for growing trees using algorithm fusion

论文作者

Rana, Pushpendra, Varshney, Lav R

论文摘要

已经提出了大规模种植树木作为减轻碳的低成本天然解决方案,但由于种植园的选择不佳而受到阻碍,尤其是在发展中国家。为了帮助进行现场选择,我们基于算法融合的EPSA(电子植入站点助理)推荐系统,将基于物理学的/传统林业科学知识与机器学习结合在一起。 EPSA通过识别森林区域内的空白斑块并根据树木生长潜力对每个这样的补丁进行排名来协助森林范围官员。实验,用户研究和部署结果表征了推荐系统在塑造树木种植园作为自然气候解决方案的长期成功方面的实用性,以减轻印度北部及其他地区。

Large-scale planting of trees has been proposed as a low-cost natural solution for carbon mitigation, but is hampered by poor selection of plantation sites, especially in developing countries. To aid in site selection, we develop the ePSA (e-Plantation Site Assistant) recommendation system based on algorithm fusion that combines physics-based/traditional forestry science knowledge with machine learning. ePSA assists forest range officers by identifying blank patches inside forest areas and ranking each such patch based on their tree growth potential. Experiments, user studies, and deployment results characterize the utility of the recommender system in shaping the long-term success of tree plantations as a nature climate solution for carbon mitigation in northern India and beyond.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源