论文标题

近似多边形曲线的填料

Approximating the packedness of polygonal curves

论文作者

Gudmundsson, Joachim, Sha, Yuan, Wong, Sampson

论文摘要

2012年,Driemel等人。 \ cite {dblp:journals/dcg/driemelhw12}引入了$ c $包装曲线的概念,作为现实的输入模型。在$ c $是常数的情况下,他们给出了接近线性的时间$(1+ \ varepsilon)$ - 用于计算两个$ c $ c $包装的多边形曲线之间的fréchet距离的近似算法。从那时起,许多论文都使用了模型。 在本文中,我们考虑了计算最小的$ c $的问题,在$ \ mathbb {r}^d $中,给定的多边形曲线是$ c $ - 包装。我们提出两种近似算法。第一种算法是$ 2 $ - APPROXIMATION算法,以$ O(Dn^2 \ log N)$时间运行。在情况下,$ d = 2 $,我们开发了更快的算法,该算法返回$(6+ \ varepsilon)$ - 近似值,并以$ o(((n/\ varepsilon^3)^{4/3} {4/3} polylog(n/\ varepsilon))运行。 我们还实施了第一个算法,并计算了16组实际轨迹的近似包装值。实验表明,$ c $包装的概念是许多曲线和轨迹的有用的现实输入模型。

In 2012 Driemel et al. \cite{DBLP:journals/dcg/DriemelHW12} introduced the concept of $c$-packed curves as a realistic input model. In the case when $c$ is a constant they gave a near linear time $(1+\varepsilon)$-approximation algorithm for computing the Fréchet distance between two $c$-packed polygonal curves. Since then a number of papers have used the model. In this paper we consider the problem of computing the smallest $c$ for which a given polygonal curve in $\mathbb{R}^d$ is $c$-packed. We present two approximation algorithms. The first algorithm is a $2$-approximation algorithm and runs in $O(dn^2 \log n)$ time. In the case $d=2$ we develop a faster algorithm that returns a $(6+\varepsilon)$-approximation and runs in $O((n/\varepsilon^3)^{4/3} polylog (n/\varepsilon)))$ time. We also implemented the first algorithm and computed the approximate packedness-value for 16 sets of real-world trajectories. The experiments indicate that the notion of $c$-packedness is a useful realistic input model for many curves and trajectories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源