论文标题
红地毯到搏击俱乐部:暴力视频中的部分监督域转移以进行面部识别
Red Carpet to Fight Club: Partially-supervised Domain Transfer for Face Recognition in Violent Videos
论文作者
论文摘要
在许多实际问题中,通常在培训与部署的数据的特征之间存在很大的差异。一个典型的例子是对侵略视频的分析:在犯罪发生率中,通常需要根据其干净的肖像式照片来识别,而不是先前的视频。这导致了三个主要挑战。暴力视频和ID-Photos之间的大型领域差异,大多数人缺乏视频示例以及有限的培训数据可用性。为了模仿这种情况,我们制定了一个现实的域转移问题,其目标是将培训的识别模型转移到了训练有清洁的姿势图像的识别模型到暴力视频的目标领域,其中训练视频仅适用于主题的一部分。为此,我们介绍了WildestFaces数据集,该数据集是在各种不良条件下量身定制的,该数据集是针对研究跨域识别的。我们将将识别模型从干净的图像域转移到暴力视频的任务分为两个子问题,并使用(i)用于分类器转移的(i)堆叠的仿射转换来解决它们,(ii)注意力驱动的时间适应时间。我们还为域转移制定了基于自我注意力的模型。我们为这项清洁识别任务建立了严格的评估协议,并对所提出的数据集和方法进行了详细的分析。我们的实验强调了WildestFaces数据集引入的独特挑战以及所提出方法的优势。
In many real-world problems, there is typically a large discrepancy between the characteristics of data used in training versus deployment. A prime example is the analysis of aggression videos: in a criminal incidence, typically suspects need to be identified based on their clean portrait-like photos, instead of their prior video recordings. This results in three major challenges; large domain discrepancy between violence videos and ID-photos, the lack of video examples for most individuals and limited training data availability. To mimic such scenarios, we formulate a realistic domain-transfer problem, where the goal is to transfer the recognition model trained on clean posed images to the target domain of violent videos, where training videos are available only for a subset of subjects. To this end, we introduce the WildestFaces dataset, tailored to study cross-domain recognition under a variety of adverse conditions. We divide the task of transferring a recognition model from the domain of clean images to the violent videos into two sub-problems and tackle them using (i) stacked affine-transforms for classifier-transfer, (ii) attention-driven pooling for temporal-adaptation. We additionally formulate a self-attention based model for domain-transfer. We establish a rigorous evaluation protocol for this clean-to-violent recognition task, and present a detailed analysis of the proposed dataset and the methods. Our experiments highlight the unique challenges introduced by the WildestFaces dataset and the advantages of the proposed approach.