论文标题
在三维趋化性 - 螺旋杆菌系统中的有条件估计,并应用于凯勒 - 塞格 - 流体模型,该模型占梯度依赖性通量限制
Conditional estimates in three-dimensional chemotaxis-Stokes systems and application to a Keller-Segel-fluid model accounting for gradient-dependent flux limitation
论文作者
论文摘要
该手稿介绍了三维版的磁通限制的凯勒 - 塞格系统,该系统通过运输和浮力耦合到不可压缩的Stokes方程。 主要目标是验证在某些无流体简化中,在某个参数方面(被称为最佳),这是通过适当强大的通量限制预防爆炸的特征,这在被认为是全面的趋化性液体系统的框架中也存在。为了实现这一目标,作为可能独立利益的次要目标,手稿分别在相当一般的环境中为流体场和出租车梯度建立了一些条件界限。 此后考虑到的特定问题的应用促进了对全球存在的结果的推导,用于在整个和本质上是最佳参数范围内,实际上在整个和最佳的参数范围内,与先前相关工作相比,实际上在整个和本质上是最佳的参数范围内,实际上是在整个和本质上是最佳参数范围内的推导。
This manuscript deals with the three-dimensional version of a flux-limited Keller-Segel system coupled to the incompressible Stokes equations through transport and buoyancy. The main goal consists in verifying that within a certain parameter regime, known as being optimal therefor in some fluid-free simplification, a feature of blow-up prevention by suitably strong flux limitation persists also in the framework of the considered full chemotaxis-fluid system. To achieve this, as a secondary objective of possibly independent interest the manuscript separately establishes some conditional bounds for fluid fields and taxis gradients in a fairly general setting. The application thereof to the specific problem under consideration thereafter facilitates the derivation of a result on global existence of bounded classical solutions for widely arbitrary initial data actually, indeed within the entire and essentially optimal parameter range, through an argument which appears to be signficantly condensed when compared to reasonings pursued in previous related works.