论文标题

氧化物纳米线中Majorana边缘状态的自旋轨道极化

Spin-orbital polarization of Majorana edge states in oxides nanowires

论文作者

Settino, J., Forte, F., Perroni, C. A., Cataudella, V., Cuoco, M., Citro, R.

论文摘要

我们研究了一个具有$ d- $轨道的一维纳米线中拓扑超导性的范式,并且由于轨道Rashba相互作用,原子轨道旋转 - 旋转旋转耦合和结构杂乱的竞争而引起的旋转轨道自由度的强烈相互作用。我们证明,所得的电子结构表现出轨道依赖的磁各向异性,影响了拓扑相图和主要结合状态(MBSS)的特征。对MBS的电子成分的检查表明,自旋轨道极化通常沿应用的Zeeman磁场的方向发生,并横向至磁性和轨道Rashba磁场。对称和反对称自旋轨道耦合的竞争显着导致旋转和轨道矩横向横向到轨道Rashba田地的竞争,其表现基本上是轨道依赖的。沿施加的Zeeman场的自旋轨道极化的行为反映了正常状态中具有不相等轨道特征的多个费米点的存在。另外,对与自旋轨道纠缠程度相关的电子参数变化的响应导致MBS的自旋轨道极化的独特演化。这些发现揭示了与MBS的实验检测相关的单一标志的新颖路径。

We investigate a paradigmatic case of topological superconductivity in a one-dimensional nanowire with $d-$orbitals and a strong interplay of spin-orbital degrees of freedom due to the competition of orbital Rashba interaction, atomic spin-orbit coupling, and structural distortions. We demonstrate that the resulting electronic structure exhibits an orbital dependent magnetic anisotropy which affects the topological phase diagram and the character of the Majorana bound states (MBSs). The inspection of the electronic component of the MBSs reveals that the spin-orbital polarization generally occurs along the direction of the applied Zeeeman magnetic field, and transverse to the magnetic and orbital Rashba fields. The competition of symmetric and antisymmetric spin-orbit coupling remarkably leads to a misalignment of the spin and orbital moments transverse to the orbital Rashba fields, whose manifestation is essentially orbital dependent. The behavior of the spin-orbital polarization along the applied Zeeman field reflects the presence of multiple Fermi points with inequivalent orbital character in the normal state. Additionally, the response to variation of the electronic parameters related with the degree of spin-orbital entanglement leads to distinctive evolution of the spin-orbital polarization of the MBSs. These findings unveil novel paths to single-out hallmarks relevant for the experimental detection of MBSs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源