论文标题
2+1和3+1尺寸的非线性狄拉克方程的孤立波解决方案限制了平面和空间曲线
Solitary wave solutions of the 2+1 and 3+1 dimensional nonlinear Dirac equation constrained to planar and space curves
论文作者
论文摘要
我们研究了曲率和扭转对平面和空间曲线上考虑的非线性狄拉克方程的孤子的影响。由于此处考虑的曲线的自旋连接为零,因此ARC变量提供了一种自然设置以了解曲率的作用,然后我们可以直接从度量标准获得1+1维dirac方程的转换。根据曲率,孤子轮廓要么缩小或扩展。我们的结果可能适用于尚未合成的弯曲准圆叶冷凝物。
We study the effect of curvature and torsion on the solitons of the nonlinear Dirac equation considered on planar and space curves. Since the spin connection is zero for the curves considered here, the arc variable provides a natural setting to understand the role of curvature and then we can obtain the transformation for the 1+1 dimensional Dirac equation directly from the metric. Depending on the curvature, the soliton profile either narrows or expands. Our results may be applicable to yet-to-be-synthesized curved quasi-one dimensional Bose condensates.