论文标题
Heisenberg-Virasoro躺着的保形超级级
The Heisenberg-Virasoro Lie conformal superalgebra
论文作者
论文摘要
在本文中,我们通过使用一类Heisenberg-virasoro Lie Sonformal模块,引入了一个有限的谎言同条超级级超级级超级级超级级超级级超级级超级级别的谎言。 Ramond类型$§$的Super Heisenberg-Virasoro代数是由$ \ Mathfrak {S} $的正式分发属于Superalgebra定义的。然后,我们构建了一类简单的$§$ - 模型,这些模型是从某些有限尺寸可溶剂可溶解的Superalgebras的简单模块引起的。这些模块是简单限制的$§$模块的同构,并包括最高的权重模块,Whittaker模块和高级Whittaker模块。作为副产品,我们提出了$§$的子代理,这对Neveu-Schwarz类型的超级海森伯格 - 维拉索罗代数是同构的。
In this paper, we introduce a finite Lie conformal superalgebra called the Heisenberg-Virasoro Lie conformal superalgebra $\mathfrak{s}$ by using a class of Heisenberg-Virasoro Lie conformal modules. The super Heisenberg-Virasoro algebra of Ramond type $§$ is defined by the formal distribution Lie superalgebra of $\mathfrak{s}$. Then we construct a class of simple $§$-modules, which are induced from simple modules of some finite dimensional solvable Lie superalgebras. These modules are isomorphic to simple restricted $§$-modules, and include the highest weight modules, Whittaker modules and high order Whittaker modules. As a byproduct, we present a subalgebra of $§$, which is isomorphic to the super Heisenberg-Virasoro algebra of Neveu-Schwarz type.