论文标题

一种发现异常天文光曲线及其类似物的方法

A method for finding anomalous astronomical light curves and their analogs

论文作者

Martínez-Galarza, Juan Rafael, Bianco, Federica, Crake, Dennis, Tirumala, Kushal, Mahabal, Ashish A., Graham, Matthew J., Giles, Daniel

论文摘要

我们对宇宙的理解从故意的,有针对性的已知现象的有针对性的研究以及偶然的,意外的发现中获利,例如在KIC 8462852(Boyajian的Star)方向发现了复杂的可变性模式。即将进行的调查,例如Vera C. Rubin天文台对时空的遗产调查(LSST),将在所有时间尺度上探索天体物理瞬变的参数空间,并为发现更极端的意外现象例子提供了机会。我们研究了识别新颖对象并在大型时间序列数据集中将它们背景化的策略,以促进发现新的对象类别的发现以及对其异常性质的物理解释。我们开发了一种方法,该方法结合了基于树的和流行学习算法,用于执行两个任务:1)在时间域数据集中识别和对异常对象进行排名; 2)根据它们的相似性将这些异常分组以识别类似物。我们通过结合具有基于树的方法的异常得分来实现后者,并具有尺寸歧管学习策略。在减少空间中的聚类可以成功识别异常和类似物。我们还评估了预处理和功能工程方案的影响,并通过使用Gaia颜色和亮度信息来增强Kepler数据来研究我们模型将其识别为异常的物体的天体物理性质。我们发现,用于组合的多个模型是识别新型光曲线和光曲线家族的有前途的策略。

Our understanding of the Universe has profited from deliberate, targeted studies of known phenomena, as well as from serendipitous, unexpected discoveries, such as the discovery of a complex variability pattern in the direction of KIC 8462852 (Boyajian's star). Upcoming surveys, such as the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST), will explore the parameter space of astrophysical transients at all time scales, and offer the opportunity to discover even more extreme examples of unexpected phenomena. We investigate strategies to identify novel objects and to contextualize them within large time-series data sets in order to facilitate the discovery of new classes of objects, as well as the physical interpretation of their anomalous nature. We develop a method that combines tree-based and manifold-learning algorithms for anomaly detection in order to perform two tasks: 1) identify and rank anomalous objects in a time-domain dataset; and 2) group those anomalies according to their similarity in order to identify analogs. We achieve the latter by combining an anomaly score from a tree-based method with a dimensionality manifold-learning reduction strategy. Clustering in the reduced space allows for the successful identification of anomalies and analogs. We also assess the impact of pre-processing and feature engineering schemes and investigate the astrophysical nature of the objects that our models identify as anomalous by augmenting the Kepler data with Gaia color and luminosity information. We find that multiple models, used in combination, are a promising strategy to identify novel light curves and light curve families.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源