论文标题

在加权强壮的不等式上,二维矩形操作员 - E.锯耶定理的扩展

On weighted Hardy inequality with two-dimensional rectangular operator -- extension of the E. Sawyer theorem

论文作者

Stepanov, V. D., Ushakova, E. P.

论文摘要

$ \ mathbb {r}^2 _+$在$ \ mathbb {r}^2 _+$上获得的那对​​重量$ v $和$ w $的表征是一个表征,为此,两维的矩形集成运算符是从加权的lebesgue space $ l^p_v(\ m}^r}^r}^2 _+l^Q_____的$ l^p_v(r} $ l^q_w(r^q q q) $ 1 <p \ not = q <\ infty $,这是E. Sawyer的结果\ Cite {Saw1}的必要补充,价格为$ 1 <p \ leq Q <\ infty $。此外,我们声明E. sawyer定理是实际的,如果$ p = q $,对于$ p <q $,标准不那么复杂。 $ q <p $是新的。

A characterization is obtained for those pairs of weights $v$ and $w$ on $\mathbb{R}^2_+$, for which the two--dimensional rectangular integration operator is bounded from a weighted Lebesgue space $L^p_v(\mathbb{R}^2_+)$ to $L^q_w(\mathbb{R}^2_+)$ for $1<p\not= q<\infty$, which is an essential complement to E. Sawyer's result \cite{Saw1} given for $1<p\leq q<\infty$. Besides, we declare that the E. Sawyer theorem is actual if $p=q$ only, for $p<q$ the criterion is less complicated. The case $q<p$ is new.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源