论文标题
量子Frobenius Heisenberg分类
Quantum Frobenius Heisenberg categorification
论文作者
论文摘要
我们将示意性单体类别$ \ MATHCAL {H} \ TEXTIT {eis} _K(a; z,t)$,我们称为量子frobenius heisenberg类别,与对称的frobenius frobenius frobenius superalgebra $ a $ a $,中央电荷$ k \ z $ z $ z} $ in \ z} $ s} $ { 戒指。当$ a $很琐碎时,即等于地面环时,这些类别恢复了我们先前工作中引入的量子Heisenberg类别,而当中央费用$ k $为零时,它们会产生Aggine Homfly-ppt Skein类别的概括。通过利用$ \ Mathcal {h} \ textit {eis} _k(a; z,t)$的某些自然分类动作,在广义环形词对象上,我们证明了形态学空间的基础定理。
We associate a diagrammatic monoidal category $\mathcal{H}\textit{eis}_k(A;z,t)$, which we call the quantum Frobenius Heisenberg category, to a symmetric Frobenius superalgebra $A$, a central charge $k \in \mathbb{Z}$, and invertible parameters $z,t$ in some ground ring. When $A$ is trivial, i.e. it equals the ground ring, these categories recover the quantum Heisenberg categories introduced in our previous work, and when the central charge $k$ is zero they yield generalizations of the affine HOMFLY-PT skein category. By exploiting some natural categorical actions of $\mathcal{H}\textit{eis}_k(A;z,t)$ on generalized cyclotomic quotients, we prove a basis theorem for morphism spaces.