论文标题
涡流结合的Majorana零模式的鲁棒性针对相关障碍
Robustness of vortex-bound Majorana zero modes against correlated disorder
论文作者
论文摘要
我们研究了相关障碍对二维拓扑超导体中磁涡流的主要零模式(MZM)的影响。从与$ p_x \ pm i p_y $ p_y $ p_y $ p_y $ p_y $ p_y的晶格模型开始,我们使用扰动理论来描述弱障碍的主要纳入理论的增强,并提高了弱障碍的主要定位长度,并描述了一种自以为是的数值解决方案,以了解MZMS在强疾病中的分解。我们发现,相关疾病对MZM的影响比不相关的疾病具有更强的作用,并且如果疾病相关长度$ \ ell $与超导相干长度$ξ$相同,则最有害。相比之下,由于随机变化在$ξ$的长度尺度内相互取消,MZM可以使$ \ ell \ llξ$生存更强的障碍,而如果它位于一个给定障碍实现的有利领域,则MZM可以生存至非常强大的障碍。
We investigate the effect of correlated disorder on Majorana zero modes (MZMs) bound to magnetic vortices in two-dimensional topological superconductors. By starting from a lattice model of interacting fermions with a $p_x \pm i p_y$ superconducting ground state in the disorder-free limit, we use perturbation theory to describe the enhancement of the Majorana localization length at weak disorder and a self-consistent numerical solution to understand the breakdown of the MZMs at strong disorder. We find that correlated disorder has a much stronger effect on the MZMs than uncorrelated disorder and that it is most detrimental if the disorder correlation length $\ell$ is on the same order as the superconducting coherence length $ξ$. In contrast, MZMs can survive stronger disorder for $\ell \ll ξ$ as random variations cancel each other within the length scale of $ξ$, while an MZM may survive up to very strong disorder for $\ell \gg ξ$ if it is located in a favorable domain of the given disorder realization.