论文标题
在适当的凸出实体歧管上,具有广义尖端
On properly convex real-projective manifolds with Generalized Cusp
论文作者
论文摘要
假设$ e $是不可约定的,正确凸出的,真实的$ n $ n $ -manifold $ m $的结束。如果$π_1e$包含一个有限索引同构的子组为$ {\ mathbb z}^{n-1} $,而$ e \ ekhookrightArrow m $ is $π_1$ iNjective,则$ e $是一般的cusp。当所有目的都是这种类型时,我们列出了一些后果。在某些假设下,我们证明了正确凸流的综合歧管的全体性是不可还原的。
Suppose $E$ is an end of an irreducible, properly convex, real-projective $n$-manifold $M$. If $π_1E$ contains a subgroup of finite index isomorphic to ${\mathbb Z}^{n-1}$, and $E\hookrightarrow M$ is $π_1$-injective, then $E$ is a generalized cusp. We list some consequences when all ends are of this type. Under certain hypotheses we prove the holonomy of a properly convex manifold is irreducible.