论文标题
弱透镜收敛单点概率分布函数及其自动协方差的准确分析模型
Accurate Analytic Model for the Weak Lensing Convergence One-Point Probability Distribution Function and its Auto-Covariance
论文作者
论文摘要
单点概率分布函数(PDF)是非高斯宇宙学领域的强大摘要统计量,例如从星系形状或宇宙微波背景(CMB)地图重建的弱透镜(WL)收敛。到目前为止,尚未开发出成功描述WL收敛PDF的高分子尾部的分析模型,该模型是针对第一原理的小平滑量表的。在这里,我们提出了一种晕光模式形式主义,以计算WL收敛性PDF,这是基于我们先前对Thermal Sunyaev-Zel'Dovich领域的结果。此外,我们将形式主义扩展到分析计算收敛PDF的协方差矩阵。与数值模拟的比较通常证实了我们形式主义在WL收敛PDF的非高斯正尾部的有效性,但也揭示了PDF对模拟中小规模系统效应的强烈敏感性(例如,由于有限分辨率)。最后,我们根据我们的新分析模型提供了一个简单的Fisher预测,以进行类似鲁宾的类似鲁宾的测量调查。考虑到$ \ {a_s,ω_m,σm_ν\} $参数空间,并仅在$ a_s $上进行Pranck cmb先验,我们预测一个边缘化的约束$σ(σm_ν)\ yywl convergence pdf soly hal hal shal seliration shar shal seliration the Marngical selfiation the Marngical serialsing the Marngical serion serialsing the shar sernecriations the Marngical serialsing the Marngical sern serialsing hal selose s s ryage s y Indriagation \ ev。中微子质量总和上的此误差线与正常层次结构中允许的最小值相当,说明了WL收敛PDF的强约束功率。我们在https://github.com/leanderthiele/hmpdf上公开提供代码。
The one-point probability distribution function (PDF) is a powerful summary statistic for non-Gaussian cosmological fields, such as the weak lensing (WL) convergence reconstructed from galaxy shapes or cosmic microwave background (CMB) maps. Thus far, no analytic model has been developed that successfully describes the high-convergence tail of the WL convergence PDF for small smoothing scales from first principles. Here, we present a halo-model formalism to compute the WL convergence PDF, building upon our previous results for the thermal Sunyaev-Zel'dovich field. Furthermore, we extend our formalism to analytically compute the covariance matrix of the convergence PDF. Comparisons to numerical simulations generally confirm the validity of our formalism in the non-Gaussian, positive tail of the WL convergence PDF, but also reveal the convergence PDF's strong sensitivity to small-scale systematic effects in the simulations (e.g., due to finite resolution). Finally, we present a simple Fisher forecast for a Rubin-Observatory-like survey, based on our new analytic model. Considering the $\{A_s, Ω_m, Σm_ν\}$ parameter space and assuming a Planck CMB prior on $A_s$ only, we forecast a marginalized constraint $σ(Σm_ν) \approx 0.08$ eV from the WL convergence PDF alone, even after marginalizing over parameters describing the halo concentration-mass relation. This error bar on the neutrino mass sum is comparable to the minimum value allowed in the normal hierarchy, illustrating the strong constraining power of the WL convergence PDF. We make our code publicly available at https://github.com/leanderthiele/hmpdf.