论文标题

建筑物能源效率的数据融合策略:概述,挑战和新颖方向

Data fusion strategies for energy efficiency in buildings: Overview, challenges and novel orientations

论文作者

Himeur, Yassine, Alsalemi, Abdullah, Al-Kababji, Ayman, Bensaali, Faycal, Amira, Abbes

论文摘要

最近,人们一直致力于制定数据融合策略,以实现建筑物的能源效率,在这些建筑物中可以处理各种信息。但是,将适当的数据融合策略应用于设计有效的能源效率系统并不直接。它需要先验了解现有的融合策略,其应用和其性质。在这方面,寻求为能源研究社区提供对建立节能系统,其原理,优势和潜在应用的数据融合策略的更好理解,本文提出了对部署的现有数据融合机制进行的广泛调查,以减少过度消耗和促进可持续性。我们研究了他们的概念,优势,挑战和弊端,并对现有数据融合策略和其他促成因素进行分类法。随后,使用各种参数(包括数据融合水平,数据融合技术,行为变化影响者,行为变化激励,记录的数据,平台架构,IoT技术和应用程序方案)进行了最先进的基于数据融合的能源效率框架的全面比较。此外,提出了一种基于2D局部纹理描述符的融合,提出了一种新颖的电器识别方法,其中1D功率信号被转换为2D空间并将其视为图像。在三个真实数据集上进行的经验评估显示出令人鼓舞的性能,其中达到了99.68%的精度和99.52%的F1得分。此外,还探索了各种开放研究挑战和未来的取向,以改善基于数据融合的能源效率生态系统。

Recently, tremendous interest has been devoted to develop data fusion strategies for energy efficiency in buildings, where various kinds of information can be processed. However, applying the appropriate data fusion strategy to design an efficient energy efficiency system is not straightforward; it requires a priori knowledge of existing fusion strategies, their applications and their properties. To this regard, seeking to provide the energy research community with a better understanding of data fusion strategies in building energy saving systems, their principles, advantages, and potential applications, this paper proposes an extensive survey of existing data fusion mechanisms deployed to reduce excessive consumption and promote sustainability. We investigate their conceptualizations, advantages, challenges and drawbacks, as well as performing a taxonomy of existing data fusion strategies and other contributing factors. Following, a comprehensive comparison of the state-of-the-art data fusion based energy efficiency frameworks is conducted using various parameters, including data fusion level, data fusion techniques, behavioral change influencer, behavioral change incentive, recorded data, platform architecture, IoT technology and application scenario. Moreover, a novel method for electrical appliance identification is proposed based on the fusion of 2D local texture descriptors, where 1D power signals are transformed into 2D space and treated as images. The empirical evaluation, conducted on three real datasets, shows promising performance, in which up to 99.68% accuracy and 99.52% F1 score have been attained. In addition, various open research challenges and future orientations to improve data fusion based energy efficiency ecosystems are explored.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源